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We adopt the continuum limit of a linear, isotropic, homogeneous, transparent, dispersion-
negligible dielectric of refractive index n and examine the consequences of the effective speed of light
in a stationary dielectric, c/n, for D’Alembert’s principle and the Lagrange equations. The princi-
ples of dynamics in the dielectric-filled space are then applied to the electromagnetic Lagrangian and
we derive equations of motion for the macroscopic fields. A direct derivation of the total energy–
momentum tensor from the field strength tensor for the electromagnetic field in a dielectric is used
to demonstrate the utility of the new theory by resolving the century-old Abraham–Minkowski elec-
tromagnetic momentum controversy in a way that preserves the principles of conservation of energy,
conservation of linear momentum, and conservation of angular momentum.

I. INTRODUCTION

In the real-world, a material is composed of micro-
scopic particles embedded in the vacuum. The charac-
teristics of the material are determined by the types of
particles and the manner of their interactions. Because
an explicit accounting of all of the particles and their
interactions is problematic for most materials, we are
usually content with a continuum description of mate-
rial effects in terms of macroscopic parameters that are
proportional to the number density of the microscopic
particles in a suitably large volume. Although the macro-
scopic treatment does not have the same physical content
of the microscopic theory, it must nevertheless be a self-
contained and self-consistent formalism of the physical
processes that occur in the limited system.

In continuum electrodynamics, electromagnetic fields
are analyzed using an empirical set of equations of mo-
tion for the fields, the macroscopic Maxwell equations, in
which a simple dielectric is treated as a region of space
where a macroscopic polarization field exists in response
to the presence of a macroscopic electric field. Alterna-
tively, we can view a stationary dielectric as a continuous
homogeneous region of space in which light travels at a
reduced speed, c/n, compared to the speed of light c in
the vacuum. In this article, we derive a self-contained
and self-consistent theoretical treatment of classical con-
tinuum electrodynamics from this fundamental property
of a macroscopic dielectric. The significance of the new
continuum electrodynamics is that the four-dimensional
formulation produces the correct traceless symmetric to-
tal energy–momentum four-tensor [1–4] that embodies,
in continuum form, the laws of conservation of energy,
conservation of linear momentum, and conservation of
angular momentum.

We proceed as follows: In section II, we adopt the con-
tinuum limit of a stationary linear dielectric of refractive
index n and examine the consequences of the effective
light speed c/n for D’Alembert’s principle and the La-
grange equations. In Section III, we derive equations of
motion for the macroscopic fields in a stationary dielec-

tric medium

∇×B+
n

c

∂Π

∂t
=

nJ

c
(1.1a)

∇×Π−
n

c

∂B

∂t
=

∇n

n
×Π (1.1b)

∇ ·B = 0 (1.1c)

∇ ·Π = −
∇n

n
·Π− ρ (1.1d)

from the Lagrangian. Here, B = ∇×A is the magnetic
field, Π = (n/c)∂A/(∂t) is the conjugate momentum
field, ρ is the total charge density, J is the free charge
current, and A is the vector potential.
There is no question that the classical macroscopic

Maxwell equations

∇×H−
1

c

∂D

∂t
=

J

c
(1.2a)

∇×E+
∂B

∂t
= 0 (1.2b)

∇ ·B = 0 (1.2c)

∇ ·D = ρ (1.2d)

successfully explain the phenomena of classical contin-
uum electrodynamics, with the notable exception of
the century-old Abraham–Minkowski momentum con-
troversy. The same record of experimental and theo-
retical validation largely applies to the set of macro-
scopic electrodynamic equations of motion, Eqs. (1.1a)–
(1.1d). Apart from the scaling of the free charge cur-
rent, each of the equations of motion for the macro-
scopic fields in continuum electrodynamics, Eqs. (1.1a)–
(1.1d), is mathematically equivalent to a corresponding
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Maxwell-Heaviside equation, Eqs. (1.2a)–(1.2d) [5, 6].
However, the transformations do not comprise a tensor
transformation and the two sets of coupled equations of
motion are not equivalent. In Section IV, we develop the
tensor form of continuum electrodynamics. We construct
the field-strength tensor and derive the total energy–
momentum tensor, a result that has been sought for over
a century [7–11]. We discuss the content and role of the
total energy–momentum tensor in terms of the laws of
conservation of energy, conservation of linear momentum,
and conservation of angular momentum in a continuum.

II. PARTICLE DYNAMICS IN A DIELECTRIC

FILLED SPACE

We consider an arbitrarily large region of space to be
filled with a linear, isotropic, homogeneous, transparent
dielectric in a regime in which dispersion, electrostriction,
and magnetostriction are negligible and, for convenience,
we apply the term simple linear dielectric to this medium.
In the rest frame of the simple linear medium, the con-
stant refractive index n is the only property of a linear
dielectric that is significant to the current problem. Let
the rest frame of the dielectric be S(t, x, y, z) with or-
thogonal axes x, y, and z. Then position vectors in S are
denoted by x = (x, y, z). If a light pulse is emitted from
the origin at time t = 0, then

x2 + y2 + z2 −

(

ct

n

)2

= 0 (2.1)

describes wavefronts in the S system. Writing time as a
spatial coordinate x̄0 = ct/n, the four-vector (x̄0,x) =
(ct/n, x, y, z) represents the position of a point as a mat-
ter of geometry [12]. Because we are using an effective
speed of light in defining our timelike coordinate x̄0, the
macroscopic theory is not, and should not be expected to
be, Lorentz invariant. Lorentz invariance is tied to the
special theory of relativity and the microscopic Maxwell
equations for fields in a vacuum. A microscopic theory
of a dielectric is always possible and such a theory will
be Lorentz invariant as light travels at speed c between
scattering events. However, Lorentz invariance is not
an intrinsic symmetry of a continuous medium in which
the electromagnetic field has been averaged over multiple
scattering events creating a macroscopic field that travels
with an effective speed that is less than c [12–14].
For a system of particles, the transformation of the

position vector xi of the ith particle to J independent
generalized coordinates is

xi = xi(τ ; q1, q2, . . . , qJ), (2.2)

where τ = t/n. Applying the chain rule, we obtain the
virtual displacement

δxi =

J
∑

j=1

∂xi

∂qj
δqj (2.3)

and the velocity

ui =
dxi

dτ
=

J
∑

j=1

∂xi

∂qj

dqj
dτ

+
∂xi

∂τ
(2.4)

of the ith particle in the new coordinate system. Substi-
tution of

∂ui

∂(dqj/dτ)
=

∂xi

∂qj
(2.5)

into the identity

d

dτ

(

mui ·
∂xi

∂qj

)

= m
dui

dτ
·
∂xi

∂qj
+mui ·

d

dτ

(

∂xi

∂qj

)

(2.6)

yields

dpi

dτ
·
∂xi

∂qj
=

d

dτ

(

∂

∂(dqj/dτ)

1

2
mu2

i

)

−
∂

∂qj

(

1

2
mu2

i

)

.

(2.7)
For a system of particles in equilibrium, the virtual

work of the applied forces fi vanishes and the virtual
work on each particle vanishes leading to the principle of
virtual work

∑

i

fi · δxi = 0 (2.8)

and D’Alembert’s principle

∑

i

(

fi −
dpi

dτ

)

· δxi = 0. (2.9)

Using Eqs. (2.3) and (2.7) and the kinetic energy of the
ith particle

Ti =
1

2
mu2

i , (2.10)

we can write D’Alembert’s principle, Eq. (2.9), as

J
∑

j

[(

d

dτ

(

∂T

∂(dqj/dτ)

)

−
∂T

∂qj

)

−Qj

]

δqj = 0 (2.11)

in terms of the generalized forces

Qj =
∑

i

fi ·
∂xi

∂qj
. (2.12)

If the generalized forces come from a generalized scalar
potential function V [15], then we can write Lagrange
equations of motion

d

dτ

(

∂L

∂(∂qj/∂τ)

)

−
∂L

∂qj
= 0, (2.13)

where L = T − V is the Lagrangian. The canonical mo-
mentum is therefore

pj =
∂L

∂(dqj/dτ)
(2.14)

in a linear medium. Comparable derivations for the vac-
uum case appear in, for example, Goldstein [15] and Mar-
ion [16].



3

III. MACROSCOPIC EQUATIONS OF MOTION

FOR FIELDS IN A DIELECTRIC

We consider a dielectric block illuminated at normal in-
cidence from the vacuum by a quasimonochromatic elec-
tromagnetic pulse in the plane-wave limit. The simple di-
electric medium is linear, isotropic, homogeneous, trans-
parent, and dispersionless. Although dielectrics in the
real world are much more complicated than this model of
a simple linear dielectric, theoretical physics encourages
reducing the complexity of the real world and eliminating
non-essential details in order to determine what is truly
important. In particular, temporal dispersion is incon-
sequential for the arbitrarily long quasimonochromatic
electromagnetic field that is considered here. The dielec-
tric block is draped with a gradient-index antireflection
coating and spatial variation of the refractive index is
sufficiently smooth that reflection, and the associated ra-
diation pressure, can be neglected. Then in the rest frame
of the dielectric block, the refractive index is a smoothly
varying, real, and time-independent function of position
in a large, but finite, region of space.
The field theory [17, 18] is based on a generalization of

the discrete case in which the dynamics are derived from
a Lagrangian density L. The generalization of the La-
grange equation, Eq. (2.13), for fields in a linear medium
is [17, 18]

d

dx̄0

∂L

∂(∂Aj/∂x̄0)
=

∂L

∂Aj

−
∑

i

∂i
∂L

∂(∂iAj)
, (3.1)

where x̄0 = ct/n is the time-like coordinate in the mate-
rial and x1, x2, and x3 correspond to the respective x, y
and z coordinates. We adopt the typical conventions that
Roman indices run from one to three, Greek indices run
from zero to three, and ∂i represents the operator ∂/∂xi.
We take the Lagrangian density of the electromagnetic
field in the medium to be

L =
1

2

(

(

∂A

∂x̄0

)2

− (∇×A)2

)

+
nJ

c
·A. (3.2)

Evaluating the components of Eqs. (3.1), we have

∂L

∂(∂Aj/∂x̄0)
=

∂Aj

∂x̄0

(3.3)

∂L

∂Aj

=
nJj
c

(3.4)

∑

i

∂i
∂L

∂(∂iAj)
= [∇×∇×A]j (3.5)

for the Lagrangian density given in Eq. (3.2). Substitut-
ing the individual terms, Eqs. (3.3)–(3.5), into Eq. (3.1),
the Lagrange equations of motion for the electromagnetic

field in a dielectric are the three orthogonal components
of the vector wave equation

∇×∇×A+
∂2A

∂x̄2

0

=
nJ

c
. (3.6)

For fields, the canonical momentum density

Πj =
∂L

∂(∂Aj/∂x̄0)
(3.7)

supplants the discrete canonical momentum defined in
Eq. (2.14). We can write the second-order equation,
Eq. (3.6), as a set of first-order differential equations.
To that end, we introduce macroscopic field variables

Π =
∂A

∂x̄0

(3.8)

B = ∇×A. (3.9)

Obviously, Π is the canonical momentum field density
whose components were defined in Eq. (3.7) after making
the substitutions indicated by Eq. (3.3). Substituting the
definition of the canonical momentum field Π, Eq. (3.8),
and the definition of the magnetic field B, Eq. (3.9), into
Eq. (3.6), we obtain a Maxwell–Ampère-like law

∇×B+
∂Π

∂x̄0

=
nJ

c
. (3.10)

The divergence of B, Eq. (3.9), and the curl of Π,
Eq. (3.8), produce Thompson’s Law

∇ ·B = 0 (3.11)

and a Faraday-like law

∇×Π−
∂B

∂x̄0

=
∇n

n
×Π , (3.12)

respectively. We posit the charge continuity law

∂ρf
∂x̄0

= −∇ ·
nJ

c
(3.13)

that corresponds to conservation of free charges with a
free charge density ρf in the continuum limit. (Simply
multiplying the vacuum charge continuity law by n re-
sults in a discrepancy between the divergence of the vari-
ant Maxwell–Ampère law, Eq. (3.12) and the temporal
derivative of the Gauss-like law, Eq. (3.16).) The diver-
gence of the variant Maxwell–Ampère Law, Eq. (3.10),

∂

∂x̄0

∇ ·Π = −
∇n

n
·
∂Π

∂x̄0

+∇ ·
nJ

c
(3.14)

is combined with the charge continuity law, Eq. (3.13),
to obtain

∂

∂x̄0

∇ ·Π = −
∇n

n
·
∂Π

∂x̄0

−
∂ρf
∂x̄0

. (3.15)
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Integrating Eq. (3.15) with respect to the temporal coor-
dinate yields a version of Gauss’s law

∇ ·Π = −
∇n

n
·Π− ρf − ρb, (3.16)

where ρb is a constant of integration corresponding to a
bound charge density. This completes the set of first-
order equations of motion for the macroscopic fields,
Eqs. (3.10)–(3.12) and (3.16) that were introduced in Sec.
I as Eqs. (1.1a)–(1.1d).

IV. FIELD AND ENERGY–MOMENTUM

TENSORS

In the Maxwell–Heaviside formulation of classical con-
tinuum electrodynamics, there are two pairs of fields,
{E,B} and {D,H}, and two field-strength tensors. Here,
there is a single pair of fields {Π,B} and a single field-
strength tensor. The field-strength tensor,

Fαβ =







0 Πx Πy Πz

−Πx 0 −Bz By

−Πy Bz 0 −Bx

−Πz −By Bx 0






, (4.1)

is obtained in the usual way from

Fαβ = ∂αAβ − ∂βAα (4.2)

for homogeneous materials.
The reduction to a single field-strength tensor and a

single pair of fields results in an elegant simplification
of four-dimensional continuum electrodynamics. For ex-
ample, the total energy–momentum tensor is defined in
terms of the field tensor by [19, 20]

Tαβ = −FαλF β
λ +

1

4
gαβFλνF

λν , (4.3)

such that [1–4]

Tαβ =







(Π2 +B2)/2 (B×Π)x (B×Π)y (B×Π)z
(B×Π)x W11 W12 W13

(B×Π)y W21 W22 W23

(B×Π)z W31 W32 W33






,

(4.4)
where

Wij = −ΠjΠk −BjBk +
1

2
(Π2 +B2)δij (4.5)

is the Maxwell stress tensor and gαβ is the diagonal met-
ric tensor with non-zero elements g00 = 1 and gii = −1.
The form of the energy–momentum tensor has been

debated for over a century [7–11]. The best known can-
didates are the 1908 Minkowski [21] tensor and the 1909
Abraham [22] tensor. However, neither the Minkoswski
momentum nor the Abraham momentum is conserved.
It has been proven that the Gordon momentum [7, 23]

GG =

∫

σ

B×Π

c
dv, (4.6)

is conserved in our closed system consisting of a homo-
geneous dielectric illuminated by a quasimonochromatic
pulse at normal incidence through a gradient-index an-
tireflection coating. [1–4]. The total energy

U =

∫

σ

1

2

(

Π2 +B2
)

dv (4.7)

is likewise conserved. Then, in the absence of sources or
sinks, the conserved quantities

U =

∫

σ

T 00 dv (4.8a)

P i =
1

c

∫

σ

T i0 dv (4.8b)

are temporally invariant [19, 20].
The homogeneous tensor continuity equation is de-

scriptive of energy and momentum conservation in an
unimpeded flow. The four-divergence operator for a sys-
tem with a position four-vector (x̄0, x, y, z) is [1–4]

∂̄β =

(

n

c

∂

∂t
, ∂x, ∂y, ∂z

)

. (4.9)

Then the electromagnetic continuity equations

∂

∂x̄0

[

1

2
(Π2 +B2)

]

+∇ · (B×Π) = 0 (4.10a)

∂

∂x̄0

(B×Π) +∇ ·W = 0 (4.10b)

are the components of the homogeneous tensor continuity
equation

∂̄βT
αβ = 0 (4.11)

applied to the total energy–momentum tensor, Eq. (4.4).
Therefore, for a continuous dielectric without charges
or currents, the laws of conservation of energy and lin-
ear momentum, Eqs. (4.10a) and (4.10b), are preserved
by the temporal invariance of U , Eq. (4.8a), and P i,
Eq. (4.8b). Meanwhile, conservation of angular momen-
tum follows from the symmetry Tαβ = T βα [19, 20] of
the energy–momentum tensor, Eq. (4.4) .
The equations of motion for the macroscopic fields,

Eqs. (3.10)–(3.12) and (3.16) contain sources that we now
add to our homogeneous energy–momentum formalism.
Recognizing that sources affect the conservation of en-
ergy and momentum, we require the sources to be per-
turbative. We form scalar products of a field with the
equations of motion for the fields and combine the re-
sults to obtain the energy continuity equation

∂

∂x̄0

[

1

2
(Π2 +B2)

]

+∇·(B×Π) =
nJ

c
·Π+

∇n

n
·(B×Π)

(4.12)
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and the momentum continuity equation

∂

∂x̄0

(B×Π)+∇·W = ρΠ+B×
nJ

c
+Π2

∇n

n
. (4.13)

Then, the inhomogeneous tensor continuity equation is

∂̄βT
αβ = fα, (4.14)

where

fα =

(

nJ

c
·Π+

∇n

n
· (B×Π) , ρΠ+B×

nJ

c
+Π2

∇n

n

)

(4.15)
is the generalized force four-vector [2]. The inhomoge-
neous electromagnetic continuity equations give a gen-
eral indication of the effect of sources, but they must be
used cautiously. For example, the gradient of the refrac-
tive index must be sufficiently small that reflections can
be neglected [2]. The presence of a charges and currents

moving freely in a continuous medium has been accepted
here as a historical imperative and any forces associated
with the charges and currents should be regarded as per-
turbative.

V. SUMMARY

We have recast classical continuum electrodynamics
into a region of space in which the speed of light is c/n,
instead of c, and derived equations of motion for the
macroscopic electromagnetic fields from the electromag-
netic Lagrangian density. The success of a new physical
theory is often gauged by its ability to resolve previously
intractable problems. We presented a one-line derivation
of the total energy–momentum tensor that demonstrates
that the new representation is consistent with the con-
tinuum form of the laws of conservation of total energy
and total momentum.
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